Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
نویسندگان
چکیده
This paper investigates the abilities of Artificial Neural Networks (ANN), Least Squares – Support Vector Regression (LS-SVR), Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to improve the accuracy of daily pan evaporation estimation in sub-tropical climates. Meteorological data from the Karso watershed in India (consisting of 3801 daily records from the year 2000 to 2010) were used to develop and test the models for daily pan evaporation estimation. The measured meteorological variables include daily observations of rainfall, minimum and maximum air temperatures, minimum and maximum humidity, and sunshine hours. Prior to model development, the Gamma Test (GT) was used to derive estimates of the noise variance for each input–output set in order to identify the most useful predictors for use in the machine learning approaches used in this study. The ANN models consisted of feed forward backpropagation (FFBP) models with Bayesian Regularization (BR), along with the Levenberg– Marquardt (LM) algorithm. A comparison was made between the estimates provided by the ANN, LSSVR, Fuzzy Logic, and ANFIS models. The empirical Hargreaves and Samani method (HGS), as well as the Stephens–Stewart (SS) method, were also considered for comparison with the newer machine learning methods. The Root Mean Square Error (RMSE) and Correlation Coefficient (CORR) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison, it was found that the Fuzzy Logic and LS-SVR approaches can be employed successfully in modeling the daily evaporation process from the available climatic data. In addition, results showed that the machine learning models outperform the traditional HGS and SS empirical methods. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Daily Pan Evaporation Modelling With ANFIS and NNARX
Evaporation, as a major component of the hydrologic cycle, plays a key role in water resources development and management in arid and semi-arid climatic regions. Although there are empirical formulas available, their performances are not all satisfactory due to the complicated nature of the evaporation process and the data availability. This paper explores evaporation estimation methods based o...
متن کاملPSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent
In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)
This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014